Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Новые направления в математической и теоретической физике
6 октября 2016 г. 15:50–16:10, г. Москва, МИАН, ул. Губкина, д. 8
 


On uniqueness of weak solutions to transport equation with non-smooth velocity field

Paolo Bonicatto

International School for Advanced Studies (SISSA)
Видеозаписи:
MP4 144.2 Mb
MP4 568.2 Mb

Количество просмотров:
Эта страница:323
Видеофайлы:86

Paolo Bonicatto
Фотогалерея



Аннотация: Given a bounded, autonomous vector field $b \colon \mathbb{R}^d \to \mathbb{R}^d$, we study the uniqueness of bounded solutions to the initial value problem for the associated transport equation
\begin{equation}\label{eq:transport} \partial_t u + b \cdot \nabla u = 0. \end{equation}
This problem is related to a conjecture made by A. Bressan, raised studying the well-posedness of a class of hyperbolic conservation laws. Furthermore, from the Lagrangian point of view, this gives insights on the structure of the flow of non-smooth vector fields.
In the talk we will discuss the two dimensional case and we prove that, if $d=2$, uniqueness of weak solutions for \eqref{eq:transport} holds under the assumptions that $b$ is of class $\mathrm{BV}$ and it is nearly incompressible. Our proof is based on a splitting technique (introduced previously by Alberti, Bianchini and Crippa) that allows to reduce \eqref{eq:transport} to a family of 1-dimensional equations which can be solved explicitly, thus yielding uniqueness for the original problem. This is joint work with S. Bianchini and N.A. Gusev.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024