Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция по комплексному анализу памяти А. А. Гончара и А. Г. Витушкина
11 октября 2016 г. 11:00–11:50, г. Москва, МИАН, ул. Губкина, д. 8, конференц-зал, 9 этаж
 


Strong asymptotics for Bergman and Szegő polynomials for non-smooth domains and curves

N. Stylianopoulos

University of Cyprus
Видеозаписи:
MP4 432.1 Mb
MP4 1,703.1 Mb
Дополнительные материалы:
Adobe PDF 281.3 Kb

Количество просмотров:
Эта страница:424
Видеофайлы:82
Материалы:45

N. Stylianopoulos
Фотогалерея



Аннотация: Strong asymptotics for Bergman polynomials (i.e., polynomials orthonormal with respect to the area measure on a bounded domain $G$ in $\mathbb{C}$) and Szegő polynomials (i.e., polynomials orthonormal with respect to the arclength measure on a rectifiable Jordan curve $\Gamma$ in $\mathbb{C}$) have been first derived in the early 1920's by T. Carleman, for Bergman polynomials, and by G. Szegő, for the namesake polynomials, in cases when $\partial G$ and $\Gamma$ are analytic Jordan curves.
The transition from analytic to smooth was not obvious and it took almost half a century, in the 1960's, till P. K. Suetin has been able to derive similar asymptotics for both kind of polynomials, in cases when $\partial G$ and $\Gamma$ are smooth Jordan curves.
The purpose on the talk is to report on some recent results on the strong asymptotics of Bergman and Szegő polynomials, in cases when $\partial G$ and $\Gamma$ are non-smooth Jordan curves, in particular, piecewise analytic without cusps.

Дополнительные материалы: presentation.pdf (281.3 Kb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024