Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар «Глобус» (записи с 2011 года)
15 сентября 2016 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)
 


Физика образования бесконечного кластера: перколяция, слабые гели и римановы поверхности функциональных интегралов по полям

И. Я. Ерухимович

Институт элементоорганических соединений им. А. Н. Несмеянова РАН, г. Москва
Видеозаписи:
Flash Video 4,555.4 Mb
Flash Video 2,877.9 Mb
Flash Video 765.8 Mb
MP4 2,893.4 Mb

Количество просмотров:
Эта страница:509
Видеофайлы:138

И. Я. Ерухимович



Аннотация: Образование бесконечного кластера является основным событием в двух, по меньшей мере, типах явлений - перколяции и золь-гель переходе. Для перколяции основным параметром явлвется вероятность перехода той или иной пробной частицы между соседними узлами некоторой бесконечной решётки, а основной вопрос – какова вероятность $w(R,N)$ перехода этой частицы на заданное расстояние $R$ после $N$ шагов по решётке. Для золь-гель перехода речь идёт об образовании из молекул, способных образовывать друг с другом насыщенные связи, таких кластеров, которые способны заполнять весь предоставленный им объём. Здесь параметром является константа равновесия $k$ для указанных связей, и, в отличие от перколяции, сумма весов всех возможных кластеров не нормирована на единицу, а является статистической суммой системы $Z(V,\rho,k,f)$, где $\rho$ - плотность молекул и $f$ - максимальное числа связей на одну молекулу (так называемая функциональность). В своём докладе я сконцентрируюсь на более физическом и менее изученном явлении золь-гель перехода.
Будет показано, как описать золь-гель переход на языке функциональных интегралов по полям (подход Эдвардса) и интегралов по плотностям (подход И. Лифшица) и как подход Лифшица позволяет описать нетривиальную структуру бесконечного кластера. Мы обсудим также связь золь-гель перехода и спонтанного нарушения тождественности частиц. В заключение мы рассмотрим некоторую модельную, но точно решаемую (0-мерную) задачу о золь-гель переходе, ключевым достоинством которой является возможность показать, что состояния до и после золь-гель перехода лежат на различных листах соответствующей римановой поверхности.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024