Аннотация:
Система корней — это конечный набор векторов в евклидовом пространстве, такой что для любого из этих векторов $\mathrm{v}$ зеркальная симметрия $\mathrm{s_v}$ относительно гиперплоскости $\mathrm{H_v}$, перпендикулярной к $\mathrm{v}$, сохраняет систему, причем для всякого вектора $\mathrm{v'}$ из системы $\mathrm{s_v(v') - v'}$ является целым кратным вектора $\mathrm{v}$.
В двумерном пространстве единственными (приведенными и неприводимыми) системами корней являются нарисованные на картинке системы.
Система корней $A_2$
Система корней $B_2$
Система корней $G_2$
Оказывается, системы корней можно полностью классифицировать. Возникает несколько «серий» (бесконечных последовательностей) и несколько «исключительных» систем.
Система корней $E_8$
Мы поговорим о системах корней в пространствах произвольной размерности, их классификации, и возникающих в связи с этим диаграммах Дынкина. Кроме того, мы обсудим важное обобщение систем корней — аффинные системы и поговорим о том, в каких областях математики все это встречается.
Знания алгебры в пределах первого курса заведомо достаточно.