Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






III международная конференция «Квантовая топология»
24 июня 2016 г. 14:00–14:50, г. Москва, МИАН
 


Stable maps and branched shadows of 3-manifolds

Masaharu Ishikawa
Видеозаписи:
Flash Video 1,858.5 Mb
Flash Video 310.1 Mb
MP4 1,186.8 Mb

Количество просмотров:
Эта страница:276
Видеофайлы:89

Masaharu Ishikawa
Фотогалерея



Аннотация: As used in a paper of Costantino and D. Thurston, Turaev's shadow can be regarded locally as the Stein factorization of a stable map. In [1], we introduced the notion of stable map complexity for a compact orientable 3-manifold bounded by (possibly empty) tori counting, with some weights, the minimal number of singular fibers of codimension 2 of stable maps into the real plane, and proved that this number equals its branched shadow complexity. In consequence, we see that the hyperbolic volume is bounded from above and below by the stable map complexity, which is a direct corollary of an observation of Costantino and Thurston and an inequality obtained by Futer, Kalfagianni and Purcell.
This is a joint work with Yuya Koda in Hiroshima University. Partially supported by the Grant-in-Aid for Scientific Research (C), JSPS KAKENHI Grant Number 16K05140.
References:
  • M. Ishikawa, Y. Koda, Stable maps and branched shadows of 3-manifolds. arXiv:math/1403.0596.


Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024