Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






III международная конференция «Квантовая топология»
21 июня 2016 г. 10:00–10:50, г. Москва, МИАН
 


On volumes of compact and non-compact right-angled hyperbolic polyhedra

A. Yu. Vesnin
Видеозаписи:
Flash Video 1,953.0 Mb
Flash Video 327.7 Mb
MP4 1,253.3 Mb
Дополнительные материалы:
Adobe PDF 1.1 Mb

Количество просмотров:
Эта страница:426
Видеофайлы:120
Материалы:50

A. Yu. Vesnin
Фотогалерея



Аннотация: There is a recent progress in study of Platonic tessellations of a hyperbolic 3-space and related hyperbolic 3-manifolds by algorithmic topology methods [1, 2]. It is known that some of hyperbolic Platonic solids are right-angled. There we are interested in a class of hyperbolic 3-manifolds which can be decomposed into right-angled hyperbolic polyhedra. Necessary and sufficient conditions for a polyhedron of a given combinatorial type to be realized as a compact right-angled polyhedron in a hyperbolic 3-space were described by Pogorelov in 1967 in the very first issue of “Matematicheskie Zametki” (Mathematical Notes) [3]. The simplest compact right-angled hyperbolic polyhedron is a dodecahedron.
The universal method to construct a hyperbolic 3-manifold from few copies of an arbitrary right-angled hyperbolic polyhedron was given in [4]. This motivates the study of the census of right-angled hyperbolic polyhedra.
Recently, Inoue [5] presented 825 smallest compact right-angled hyperbolic polyhedra. We will discuss a census of non-compact right-angled hyperbolic polyhedra. For compact and non-compact cases both we will present results of numerical computations.
\medskip
References:
  • B. Everitt, 3-manifolds from Platonic solids, Topology Appl. 138 (2004), no. 1-3, 253–263.
  • M. Goerner, A census of hyperbolic Platonic manifolds and augmented knotted trivalent graphs, arxiv1602.02208.
  • A.V. Pogorelov, Regular decomposition of Lobachevskii space, Mat. Zametki 1, No. 1, 3–8 (1967).
  • A.Yu. Vesnin, Three-dimensional hyperbolic manifolds of Loebell type, Siberian Math. J. 28, No. 5, 731–734 (1987).
  • T. Inoue, The 825 smallest right-angled hyperbolic polyhedra, arxiv:1512.01761.


Дополнительные материалы: talk_2016_06_21.pdf (1.1 Mb)

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024