|
|
Научно-исследовательский семинар кафедры дискретной математики ФИВТ МФТИ
6 октября 2015 г., г. Москва, ул. Льва Толстого, д. 16, Яндекс, БЦ «Морозов», ауд. «7.Пятниц»
|
|
|
|
|
|
Аналоги задачи о справедливом разделе ресурсов
Ф. С. Стонякин |
Количество просмотров: |
Эта страница: | 172 |
|
Аннотация:
Хорошо известны задачи о справедливом разделе сокровищ (ресурсов), связанные с теорией меры. В классических задачах такого типа делимый объект обозначают как множество A, а части – как некоторую систему подмножеств. Предполагается, что каждый субъект оценивает части А с помощью некоторой безатомной меры. Разрешимость такого рода задач, как правило, в той или иной степени связана с теоремой Ляпунова о выпуклости образа безатомных векторных мер.
Однако такие подходы неудобны в некоторых ситуациях. Например, если рассмотреть ситуацию пренебрежения малыми величинами. В таком случае можно выделить класс достаточно малых подмножеств и приписать им нулевую оценку. Но объединение нескольких малых множеств может быть уже не малым и иметь ненулевую оценку. Иными словами, функция оценки множеств может быть неаддитивной и терять свойство безатомности.
В этой связи мы вводим неаддитивные аналоги понятия меры множества, которые моделируют описанную выше ситуацию. Исследованы свойства этих аналогов мер, получен аналог теоремы Ляпунова о выпуклости в специальной форме. На базе этих понятий рассмотрены соответствующие задачи о разделе ресурсов и доказаны результаты об их разрешимости. Обсуждаются бесконечномерные аналоги задачи о разделе ресурсов, моделирующие сближение бесконечного числа критериев на специальных разбиениях исходного множества.
|
|