Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конференция памяти Анатолия Алексеевича Карацубы по теории чисел и приложениям, 2016
29 января 2016 г. 10:05–10:30, г. Москва, 119991, Москва, ул. Губкина, 8, МИАН им. В.А.Стеклова РАН, 9 этаж, конференц-зал
 


Universality of the Epstein zeta-function in the lattice aspect

[Универсальность дзета-функций Эпштейна “по решёткам”]

Й. Ф. Андерссон

Малардален – государственный университет, Вестерос
Видеозаписи:
Flash Video 161.7 Mb
Flash Video 964.0 Mb
MP4 614.1 Mb

Количество просмотров:
Эта страница:288
Видеофайлы:75

J. F. Andersson



Аннотация: В докладе будет рассказано о результатах совместной работы с А. Сёдергреном, в которой нами было доказано, что дзета-функция Эпштейна универсальна “по решёткам”.

Так, пусть функция $f$ аналитична в полосе $\{s:\tfrac{1}{2} < \Re s <1\}$ и вещественна при вещественных $s$. Тогда для всякого компактного множества $K \subset \{s:\tfrac{1}{2}< \Re s <1\}$, для любого $\varepsilon>0$ и для любого достаточно большого $n$ существует некоторая $n$-мерная решётка $L$ такая, что
$$ \max_{s \in K} \biggl|\,2^{s-1}V_{n}^{-s}E_{n}\left(L,{{ns}\over 2}\right)\,-\,f(s)\biggr|\,<\,\varepsilon, $$
где $E_{n}(L,s)$ обозначает дзета-функцию Эпштейна, отвечающую решётке $L$, а $V_{n}=\pi^{n/2}/\,\Gamma(n/2+1)$ - объём $n$-мерного шара. Если же рассматривать приближения функции $f(s)$ разностью двух дзета-функций Эпштейна, отвечающих разным решёткам, то аналогичный результат будем иметь место во всей полуплоскости $\Re s>\tfrac{1}{2}$. Это первый пример, когда теорема универсальности типа Воронина имеет место во всей полуплоскости абсолютной сходимости.

Основными составляющими нашего доказательства являются результаты о распределении векторов решётки из диссертации Сёдергрена, а также некоторые аппроксимационные утверждения о полиномах Дирихле.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024