Аннотация:
Автоморфные дискриминанты, рассматриваемые в докладе, — это модулярные формы,
носитель дивизора которых совпадает с дискриминантом пространств модулей решетчато-поляризованных K3 поверхностей. Если кратность всех нулей равна одному, то эта рефлективная модулярная форма определяет гиперболическую (Лоренцеву) алгебру Каца-Муди и арифметическую зеркальную симметрию K3 поверхностей, введенную в работах Гриценко-Никулина в конце 90х.
В докладе будет представлена теорема, которая позволяет построить
много интересных рефлективных модулярных форм. В частности,
1) более 35 автоморфных дискриминантов и Лоренцевых алгебр Каца-Муди
нового класса гиперболических систем корней, найденных В. В. Никулиным;
2) девять (из 14) автоморфных дискриминантов версальных деформаций исключительных особенностей Арнольда;
3) дискриминант квартик в P^3, который играл важную роль в докладе Э. Б. Винберга на нашем семинаре (от 13.10.2015);
4) дискриминанты двух первых пространств модулей поляризованных неприводимых голоморфных симплектических многообразий.