|
|
Современные геометрические методы
25 ноября 2015 г. 18:30–20:05, г. Москва, ГЗ МГУ, ауд. 14-02
|
|
|
|
|
|
Бесконечная серия 4-мерных особенностей типа седло-седло с одинаковой границей
М. А. Тужилин |
Количество просмотров: |
Эта страница: | 160 |
|
Аннотация:
Рассмотрим интегрируемую гамильтонову систему с двумя степенями свободы на некотором симплектическом многообразии. У нее имеются два интеграла, которые порождают отображение из этого многообразия в плоскость, называемое отображением моментов. Предположим, что оба этих интеграла Боттовские и пусть при отображении моментов имеется особое значение ранга $0$. В случае, когда это особое значение имеет тип центр-центр, центр-седло, фокус-фокус, выполняется гипотеза А. Т. Фоменко: слоение на границе окрестности этой особенности однозначно, с точностью до Лиувиллевой эквивалентности, определяет 4-мерную особенность.
В случае, когда особое значение имеет тип седло-седло, гипотеза А. Т. Фоменко не выполняется. На сегодняшний день было известно только два контр-примера, которые построил А. В. Грабежной, к этой гипотезе. На докладе будет представлена бесконечная серия таких примеров и идея, как дополнительно построить примеры, подобные этим.
|
|