Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2007
29 июля 2007 г. 09:30, г. Дубна
 


Обратные задачи арифметической комбинаторики. Лекция вторая

А. А. Разборов
Видеозаписи:
Real Video 209.8 Mb
Windows Media 221.4 Mb
Flash Video 349.3 Mb
MP4 611.6 Mb

Количество просмотров:
Эта страница:1082
Видеофайлы:487

А. А. Разборов



Аннотация: Пусть $\mathbb N$ — множество натуральных чисел, $\mathbb E$ — чётных, $\mathbb P$ — простых, а $\mathbb S$ — множество всех квадратов натуральных чисел. Знаменитую теорему Лагранжа можно компактно сформулировать как равенство $\mathbb S+\mathbb S+\mathbb S+\mathbb S=\mathbb N$, а не менее знаменитую гипотезу Гольдбаха — как $\mathbb P+\mathbb P\supseteq\mathbb E$.
Изучением поведения подмножеств целых чисел (а также более сложных алгебраических структур) относительно имеющихся операций занимается (в тесном сотрудничестве с традиционной теорией чисел) арифметическая комбинаторика. Приведённые выше задачи — “прямые”: в них множество $\mathbb A$ известно, и требуется что-то доказать про более сложные образования типа $\mathbb A+\mathbb A$. Нас же будут интересовать “обратные” задачи, которые (довольно неожиданно!) оказываются не менее сложными и интересными. Пусть, скажем, множество $\mathbb A$ конечно, и всё, что про него известно — это то, что $|\mathbb A+\mathbb A|$ “намного меньше”, чем $|\mathbb A|^2$. Что можно сказать про строение $\mathbb A$? Уже этот кажущийся простым вопрос весьма далёк от окончательного решения, и мы поговорим про задачи такого рода, а также про красивую и богатую теорию, построенную в попытках научиться их решать. Стоит отметить, что эти вещи в последнее время нашли довольно неожиданные применения в довольно далёких областях таких, как, скажем, гармонический анализ и Theoretical Computer Science.
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024