Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Mathematics - XXI century. PDMI 70th anniversary
15 сентября 2010 г. 13:30, г. Санкт-Петербург
 


Гипотеза Нэша для биномиальных многообразий и многомерный алгоритм Евклида

Д. Григорьев
Видеозаписи:
Flash Video 656.8 Mb
MP4 1,399.4 Mb

Количество просмотров:
Эта страница:490
Видеофайлы:164

Д. Григорьев



Аннотация: Раздутие Нэша многообразия $Х$ определяется как замыкание графика отображения Гаусса на Х. Джон Нэш высказал гипотезу, что последовательность раздутий Нэша, начиная с $Х$ (над полем характеристики 0) всегда заканчивается. Тогда ввиду теоремы Липмана, полученное многообразие гладкое и тем самым, даeт разрешение особенностей многообразия $Х$. В случае размерности 2 Хиронака–Спиваковский доказали нормализованную версию гипотезы Нэша, когда раздутия чередуются с нормализациями. Сложность этого разрешения особенностей (как и любого известного) очень высока. Мы устанавливаем эквивалентность гипотезы Нэша (соответственно, нормализованной) для биномиальных многообразий и остановки многомерного алгоритма Евклида (соответственно, нормализованного). Основной результат доказывает полиномиальную оценку сложности для двумерного нормализованного алгоритма Евклида.
Совместная работа с П. Мильманом.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024