Аннотация:
Теория оптимального управления занимается описанием наилучших в том или ином смысле способов перевода любой системы с любым числом параметров из одного состояния в другое. А.А. Аграчевым, в совместной работе с его учениками Д. Барилари (CNRS, CMAP École Polytechnique, Paris, France) и Л. Рицци (SISSA, Trieste, Italy), введено и изучено понятие кривизны для весьма общих задач оптимального управления. Кривизна задачи оптимального управления есть важнейший дифференциальный инвариант, извлекаемый из коротко-временной асимптотики оптимальной цены. Для задачи минимизации длины кривой на римановом многообразии эта кривизна совпадает с обычной секционной кривизной, так что общая конструкция оказывается очень далёким обобщением римановой геометрии и, как и в римановом случае, даёт мощное средство для исследования гладких задач оптимального управления без решения дифференциальных уравнений.