Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Научная сессия МИАН, посвященная подведению итогов 2015 года
11 ноября 2015 г. 12:15–12:30, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Лемма Ньютона об интегрируемых овалах в высших размерностях, и группы, порожденные отражениями

В. А. Васильев
Видеозаписи:
MP4 104.1 Mb
MP4 410.9 Mb

Количество просмотров:
Эта страница:750
Видеофайлы:172
Youtube:

В. А. Васильев
Фотогалерея



Аннотация: Решена задача В.И. Арнольда о многомерном обобщении XXVIII леммы Ньютона, поставленная в 1987 году в связи с празднованием 300-летия «Начал». Для произвольных ограниченных областей с гладкими границами во всех четномерных пространствах доказано, что не существует выпуклой ограниченной области с бесконечно гладкой границей такой, что объемы, отсекаемые от области всевозможными аффинными гиперплоскостями, определяют алгебраическую функцию на пространстве гиперплоскостей. Доказательство основано на теории Пикара–Лефшеца и теории групп, порожденных отражениями.

Список литературы
  1. V. A. Vassiliev, “Newton's lemma XXVIII on integrable ovals in higher dimensions and reflection groups”, Bull. Lond. Math. Soc., 47:2 (2015), 290–300 , arXiv: 1407.7221  mathnet  crossref  mathscinet  zmath  isi  elib  scopus


Статьи по теме:
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024