|
|
Семинар отдела математической физики МИАН
29 октября 2015 г. 11:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)
|
|
|
|
|
|
Операторный метод в аддитивной комбинаторике и множества Сидона
И. Д. Шкредов |
Количество просмотров: |
Эта страница: | 350 |
|
Аннотация:
Мы расскажем о новом методе аддитивной комбинаторики, который, грубо говоря, пытается устроить анализ Фурье на более-менее произвольном подмножестве группы, а не на всей группе. При этом рассматриваемому подмножеству ставится в соответствие спектр некоторого оператора и его собственные функции. С помощью этого подхода удалось продвинуться в целом ряде задач теории чисел и аддитивной комбинаторики: вопросах об оценках тригонометрических сумм по подгруппам, задачам о суммах произведений, структурным результатам и т.д. Будет рассказано о мотивации, поведшей к возникновению данного подхода, и разобраны некоторые простые примеры применения нашего метода.
Также мы сделаем небольшой обзор о классическом объекте комбинаторной теории чисел — множествах Сидона, то есть о множествах без решений
уравнения $x+y=z+w$ и об их обобщениях.
|
|