Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Динамика, бифуркации и странные аттракторы, 2015
22 июля 2015 г. 18:00–18:30, г. Нижний Новгород,, Нижегородский государственный университет имени Н. И. Лобачевского
 


Bifurcations of first integrals in the Kowalevski – Sokolov case

M. P. Kharlamov, P. E. Ryabov, A. Yu. Savushkin

Количество просмотров:
Эта страница:227

Аннотация: The phase topology of the integrable Hamiltonian system on $e(3)$ found by V.V.Sokolov (2001) [1] and generalizing the Kowalevski case (1889) [2] is investigated. The generalization contains, along with a homogeneous potential force field, gyroscopic forces depending on the configurational variables. Relative equilibria are classified, their type is calculated and the character of stability is defined. The Smale diagrams of the case are found and the classification of iso-energy manifolds of the reduced systems with two degrees of freedom is given. The set of critical points of the complete momentum map is represented as a union of critical subsystems; each critical subsystem is a oneparameter family of almost Hamiltonian systems with one degree of freedom. For all critical points we explicitly calculate the characteristic values defining their type. We obtain the equations of the surfaces bearing the bifurcation diagram of the momentum map. We give examples of the existing iso-energy diagrams with a complete description of the corresponding rough topology (of the regular Liouville tori and their bifurcations).
The work is partially supported by the RFBR (grant No. 15-41-02049).

Язык доклада: английский

Website: https://dx.doi.org/10.13140/RG.2.1.4413.1680

Список литературы
  1. Sokolov V. V., “A new integrable case for the Kirchhoff equations”, Theoretical and Mathematical Physics, 129:1 (2001), 1335–1340  mathnet  mathscinet  zmath  isi  scopus
  2. Kowalevski S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Mathematica, 12:1 (1889), 177–232  mathscinet  scopus
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024