Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция по функциональным пространствам и теории приближения функций, посвященная 110-летию со дня рождения академика С. М. Никольского
25 мая 2015 г. 14:55–15:20, Дифференциальные уравнения, г. Москва, МИАН
 


Краевая задача для системы уравнений Пуассона в двумерной области

Е. В. Голубева

Национальный исследовательский университет «Московский энергетический институт»
Дополнительные материалы:
Adobe PDF 117.6 Kb

Аннотация: Пусть $G\subset\mathbb{R}^2$ – ограниченная область с липшицевой и кусочно-гладкой границей $\Gamma$. В области $G$ рассматривается задача: найти решение $u(x)=\big(u_1(x), u_2(x)\big)$ системы уравнений Пуассона
\begin{equation} \label{N264:1} \Delta u = h, \quad x\in G, \end{equation}
при граничных условиях
\begin{equation} \label{N264:2} u_n = 0, \quad \left(\frac{\partial u}{\partial n} \right) _\tau = 0, \quad x \in \Gamma. \end{equation}

Здесь $h(x)=\big(h_1(x),h_2(x)\big)$ – заданная вектор-функция, $\frac{\partial u}{\partial n} = \left(\frac{\partial u_1}{\partial n}, \frac{\partial u_2}{\partial n}\right)$ – производная по нормали $n(x)=(n_1(x), n_2(x))$ вектор-функции $u(x), \ x \in \Gamma, \cdot _n$ – нормальная составляющая вектора, $\ \cdot_\tau$ – тангенциальная составляющая вектора.
Через $W^1_{2, tang}$ обозначено пространство $\{u:G \to \mathbb{R}^2 \ |\ u \in W^1_2(G) \ \& \ u_n = 0, \; x \in \Gamma \}.$
Устанавливается корректная разрешимость задачи \eqref{N264:1}, \eqref{N264:2} в пространстве $W^1_{2,tang}(G)$.
\medskip
Работа выполнена за счет гранта Российского научного фонда (соглашение №14-11-00306).

Дополнительные материалы: abstract.pdf (117.6 Kb)

Список литературы
  1. Ю. А. Дубинский, “О некоторых краевых задачах для системы уравнений Пуассона в трëхмерной области”, Дифференциальные уравнения, 45:4 (2014), 610–614
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024