|
|
Международная конференция по функциональным пространствам и теории приближения функций, посвященная 110-летию со дня рождения академика С. М. Никольского
28 мая 2015 г. 17:05–17:30, Функциональные пространства, г. Москва, МИАН
|
|
|
|
|
|
A weighted Hardy-type inequality for $0<p<1$ with sharp constant
A. Senouci Ibnou Khaldoun University, Algeria
|
|
Аннотация:
Let $\Omega $ be a Lebesgue measurable set in
$\mathbb{R}^{n}$, $u $ be a non-negative Lebesgue measurable
function on $\Omega$ (weight function), and $ 0 < p < \infty $. We
denote by $ {L_{p,u}(\Omega)} $ the space of all Lebesgue
measurable functions $ f $ on $\Omega$ for which
$$
\|f\|_{L_{p,u}(B_r)} = \biggl( \int_{\Omega} \vert f(x) \vert^p u(x)\, dx \biggr)^{\frac{1}{p}}<\infty,
$$
and by $H$ the $n$-dimensional Hardy operator.
Theorem.
Let $C_{1}>0$, $0<p<1$ and $u$,
$v$ be weight functions on $\mathbb{R}^{n}$, $(0,\infty)$
respectively. Suppose that
\begin{equation}
\int_{B_r}u^{\frac{1}{1-p}}(x)\,dx=\infty \qquad
\text{for some} \quad r>0
\label{N345:x1}
\end{equation}
and
\begin{equation}
V(r):=\int^{\infty}_{r}v(\rho)\rho^{-np}\,d\rho<\infty \qquad
\text{for all} \quad r>0.
\label{N345:x2}
\end{equation}
Consider the set of all Lebesgue measurable functions
$f$ on $\mathbb{R}^{n}$ satisfying the inequality
\begin{equation}
|f(x)|\leq C_{1}u^{\frac{1}{1-p}}(x)\|f\|_{L_{_{p,u}}(B_{(|x|).})}
\label{N345:x3}
\end{equation}
for almost all $x\in\mathbb{R}^{n}$.
Then for all functions $f$ in this set
\begin{equation}\|Hf\|_{L_{_{p,v}}(0,\infty)}
\leq C_{2}\|f\|_{L_{p,w}(\mathbb{R}^{n})}
\label{N345:x4}
\end{equation}
where
$$
w(x)=u(x) V(|x|),\qquad x\in\mathbb{R}^{n},
$$
and
$$
C_{2}=v_{n}^{-1}pC_{1}^{1-p}.
$$
If, in addition,
\begin{equation}
\int_{B_{r_{_{2}}}\setminus B_{r_{_{1}}}}u^{\frac{1}{1-p}}(x)\,dx<\infty\qquad
\text{for all} \quad 0<r_{_{1}}<r_{_{2}}<\infty,
\label{N345:x5}
\end{equation}
and
\begin{equation}
\int^{1}_{0}\exp\biggl(-C^{p}_{1}\int_{B_{1}\setminus
B_{|x|}} u^{\frac{1}{1-p}}(y)\,dy\biggr) v(r)r^{-np}dr<\infty,
\label{N345:x6}
\end{equation}
then the constant $C_{2}$ is sharp and there exists a functions $f \in L_{p,w}(\mathbb{R}^{n})$ not equivalent to $0$,
satisfying inequality \eqref{N345:x3} and such that there is equality in inequality \eqref{N345:x4}.
Joint work with Professor V. I. Burenkov and N. Azzouz.
Дополнительные материалы:
abstract.pdf (105.4 Kb)
Язык доклада: английский
|
|