|
|
Международная конференция по функциональным пространствам и теории приближения функций, посвященная 110-летию со дня рождения академика С. М. Никольского
29 мая 2015 г. 17:55–18:20, Функциональные пространства, г. Москва, МИАН
|
|
|
|
|
|
Sharp Pitt inequality and logarithmic uncertainty principle for Dunkl transform in $L^{2}$
D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov |
Количество просмотров: |
Эта страница: | 392 | Материалы: | 76 |
|
Аннотация:
Let $\Gamma(t)$ be the gamma function, $\mathbb{R}^{d}$ be the real space of $d$ dimensions,
equipped with a scalar product
$(x, y)$ and a norm $|x|=\sqrt{(x, x)}$. Denote by
$S(\mathbb{R}^{d})$ the Schwartz space on $\mathbb{R}^{d}$ and by $L^{2}(\mathbb{R}^{d})$ the Hilbert space of
complex-valued functions endowed with a norm
$\|f\|_{2}=\bigl(\int_{\mathbb{R}^{d}}|f(x)|^{2}\,dx\bigr)^{1/2}$. The Fourier transform is defined by
$$
\widehat{f}(y)=(2\pi)^{-n/2}\int_{\mathbb{R}^{d}}f(x)e^{-i(x, y)}\,dx.
$$
W. Beckner [N449:Bec] proved the Pitt inequality for the Fourier transform
\begin{equation}\label{N449:eq1}
\bigl\||y|^{-\beta}\widehat{f}(y)\bigr\|_{2}\le C(\beta)\bigl\||x|^{\beta}f(x)\bigr\|_{2},\qquad
f\in S(\mathbb{R}^{d}),\quad 0<\beta<\frac d2\mspace{2mu},
\end{equation}
with sharp constant
$$
C(\beta)=2^{-\beta}\,\frac{\Gamma(\frac{1}{2}(\frac{d}{2}-\beta))}{\Gamma(\frac{1}{2}(\frac{d}{2}+\beta))}\mspace{2mu}.
$$
Noting that
$\||y|^{-\beta}\widehat{f}(y)\|_{2}= (2\pi)^{-\beta} \| |(-\Delta)^{\beta/2}f| \|_{2}$,
Pitt's inequality can be viewed as a Hardy–Rellich inequality;
see the papers by D. Yafaev [N449:Yaf] and S. Eilertsen [N449:Eil]
for alternative proofs and extensions of \eqref{N449:eq1}.
For $\beta=0$, \eqref{N449:eq1} is the Plancherel theorem. If $\beta>0$ there
is no extremiser in inequality \eqref{N449:eq1} and its sharpness
can be obtained on the set of radial functions.
The proof of \eqref{N449:eq1} in [N449:Bec] is based on an equivalent
integral realization as a Stein-Weiss fractional integral on $\mathbb{R}^d$.
D. Yafaev in [N449:Yaf] used the following decomposition
\begin{equation}\label{N449:eq2}
L^{2}(\mathbb{R}^{d})=\sum_{n=0}^{\infty}\oplus \mathfrak{R}_{n}^{d},
\end{equation}
where $\mathfrak{R}_{0}^{d}$ is the space of radial function, and
$\mathfrak{R}_{n}^{d}=\mathfrak{R}_{0}^{d}\otimes \mathfrak{H}_{n}^{d}$ is the space of
functions in $\mathbb{R}^d$ that are products of radial functions and spherical harmonics of degree $n$.
Thanks to this decomposition it is enough to study inequality \eqref{N449:eq1} on the subsets
of $\mathfrak{R}_{n}^{d}$ which are invariant under the Fourier transform.
Following [N449:Yaf] and using similar decomposition of the space
$L^{2}(\mathbb{R}^{d})$ with the Dunkl weight, we prove sharp Pitt's inequality for the Dunkl transform.
Let $R\subset \mathbb{R}^{d}$ be a root system, $R_{+}$ be the positive subsystem of $R$, and
$k\colon R\to \mathbb{R}_{+}$ be a multiplicity function
with the property that $k$ is $G$-invariant. Here $G(R)\subset
O(d)$ is a finite reflection group generated by reflections $\{\sigma_{a}: a\in R\}$, where
$\sigma_{a}$ is a reflection with respect to a hyperplane $(a,x)=0$.
Let
$$
v_{k}(x)=\prod_{a\in R_{+}}|(a,x)|^{2k(a)}
$$
be the Dunkl weight, $d\mu_{k}(x)=c_{k}v_{k}(x)dx$, where
$$
c_{k}^{-1}=\int_{\mathbb{R}^{d}}e^{-|x|^{2}/2}v_{k}(x)\,dx
$$
is the Macdonald–Mehta–Selberg integral.
Let $L^{2}(\mathbb{R}^{d},d\mu_{k})$ be the Hilbert space of
complex-valued functions endowed with a norm
$$
\|f\|_{2,d\mu_{k}}=\biggl(\int_{\mathbb{R}^{d}}|f(x)|^{2}\,d\mu_{k}(x)\biggr)^{1/2}.
$$
Introduced by C. F. Dunkl, a family of differential–difference operators (Dunkl's operators)
associated with $G$ and $k$ are given by
$$
D_{j}f(x)=\frac{\partial f(x)}{\partial x_{j}}+
\sum_{a\in R_{+}}k(a)(a,e_{j})\,\frac{f(x)-f(\sigma_{a}x)}{(a,x)}\mspace{2mu},\qquad
j=1,\dots,d.
$$
The Dunkl kernel $e_{k}(x, y)=E_{k}(x, iy)$ is the unique solution of
the joint eigenvalue problem for the corresponding Dunkl operators:
$$
D_{j}f(x)=iy_{j}f(x),\quad j=1,\dots,d,\qquad f(0)=1.
$$
Let us define the Dunkl transforms as follows
$$
\mathcal{F}_{k}(f)(y)=\int_{\mathbb{R}^{d}}f(x)\overline{e_{k}(x,y)}\,d\mu_{k}(x), \qquad
\mathcal{F}_{k}^{-1}(f)(x)=\mathcal{F}_{k}(f)(-x),
$$
where $\mathcal{F}_{k}(f)$ and $\mathcal{F}_{k}^{-1}(f)$ are the
direct and inverse transforms correspondingly (see, e.g., [N449:Ros]).
For $k\equiv0$ we have $\mathcal{F}_{0}(f)=\widehat{f}$.
Our goal is to study Pitt's inequality for the Dunkl transform
\begin{equation}\label{N449:eq3}
\||y|^{-\beta}\mathcal{F}_{k}(f)(y)\|_{2,d\mu_{k}}\le
C(\beta,k)\||x|^{\beta}f(x)\|_{2,d\mu_{k}},\quad f\in S(\mathbb{R}^{d}),
\end{equation}
with the sharp constant $C(\beta,k)$.
Let us first recall some known results on Pitt's inequality for the Hankel transform.
Let $\lambda\ge -1/2$. Denote by $J_{\lambda}(t)$ the Bessel function of degree
$\lambda$ and by
$j_{\lambda}(t)=2^{\lambda}\Gamma(\lambda+1)t^{-\lambda}J_{\lambda}(t)$
the normalized Bessel function. Setting
$$
b_{\lambda}=\biggl(\int_{0}^{\infty}e^{-t^{2}/2}t^{2\lambda+1}\,dt\biggr)^{-1}=
\frac{1}{2^{\lambda}\Gamma(\lambda+1)}
$$
and
$d\nu_{\lambda}(r)=b_{\lambda}r^{2\lambda+1}\,dr$,
we define
$\|f\|_{2,d\nu_{\lambda}}=\bigl(\int_{\mathbb{R}_{+}}|f(r)|^{2}\,d\nu_{\lambda}(r)\bigr)^{1/2}$.
The Hankel transform is defined by
$$
\mathcal{H}_{\lambda}(f)(\rho)=\int_{\mathbb{R}_{+}}f(r)j_{\lambda}(\rho r)\,d\nu_{\lambda}(r).
$$
Note that $\mathcal{H}_{\lambda}^{-1}=\mathcal{H}_{\lambda}$.
Pitt's inequality for the Hankel transform is written as
\begin{equation}\label{N449:eq4}
\|\rho^{-\beta}\mathcal{H}_{\lambda}(f)(\rho)\|_{2,d\nu_\lambda}\le
c(\beta,\lambda)\|r^{\beta}f(r)\|_{2,d\nu_\lambda},\qquad
f\in S(\mathbb{R}_{+}),
\end{equation}
where $c(\beta,\lambda)$ is the sharp constant in (\ref{N449:eq4}) and
$S(\mathbb{R}_{+})$ is the the Schwartz space on $\mathbb{R}_{+}$.
Note that if $f\in \mathfrak{R}_{0}^{d}$, a study of the Hankel transform is of special
interest since the Fourier transform of a radial function can be written as the Hankel transform.
L. De Carli [N449:Car] proved that $c(\beta,\lambda)$ is finite only if $0\le \beta<\lambda+1$.
For $\lambda=d/2-1$, $d\in\mathbb{N}$,
the constant $c(\beta,\lambda)$ was calculated by D. Yafaev [N449:Yaf],
and in the general case by S. Omri [N449:Omr].
The proof of Pitt's inequality in [N449:Omr] is rather technical and uses the
Stein–Weiss type estimate for the so-called B-Riesz potential operator.
Following [N449:Yaf], we give a direct and simple proof of inequality \eqref{N449:eq4}.
Let $|k|=\sum_{a\in R_{+}}k(a)$ and $\lambda_{k}= d/2-1+|k|$. For a radial function $f(r)$, $r=|x|$,
Pitt's inequality for the Dunkl transform \eqref{N449:eq3} corresponds to
Pitt's inequality for the Hankel transform \eqref{N449:eq4}
with $\lambda=\lambda_{k}$. Therefore the condition
\begin{equation}\label{N449:eq5}
0\le \beta<\lambda_{k}+1
\end{equation}
is necessary for $C(\beta,k)<\infty$. Our goal is to show that in fact $C(\beta,k)=c(\beta,\lambda_{k})$ if
condition \eqref{N449:eq5} holds.
Note that for the one-dimensional Dunkl weight
$$
v_{\lambda}(t)=|t|^{2\lambda+1}, \qquad
d\mu_{\lambda}(t)=\frac{v_{\lambda}(t)\,dt}{2^{\lambda+1}\Gamma(\lambda+1)}, \qquad \lambda\ge -\frac12\mspace{2mu},
$$
and the corresponding Dunkl transform
$$
\mathcal{F}_{\lambda}(f)(s)=
\int_{\mathbb{R}}f(t)\overline{e_{\lambda}(st)}\,|t|^{2\lambda+1}\,d\mu_{\lambda}(t),\qquad
e_{\lambda}(t)=j_{\lambda}(t)-ij_{\lambda}'(t),
$$
F. Soltani [N449:Sol1]
proved Pitt's inequality that can be equivalently written as
\begin{equation}\label{N449:eq6}
\||s|^{-\beta}\mathcal{F}_{\lambda}(f)(s)\|_{2,d\mu_\lambda}\le \max
\left\{c(\beta,\lambda),c(\beta,\lambda+1)\right\}\||t|^{\beta}f(t)\|_{2,d\mu_\lambda}
\end{equation}
for $f\in S(\mathbb{R})$ and $0\le \beta<\lambda+1$. Since
$c(\beta,\lambda)\ge c(\beta,\lambda+1)$ (see [N449:Yaf]), then in fact
\eqref{N449:eq6} holds with the constant $c(\beta,\lambda)$ and therefore,
we have in this case $C(\beta,k)=c(\beta,\lambda_{k})$.
Finally, we remark that Pitt's inequality in $L^{2}$ for the multi-dimensional
Dunkl transform has been recently established in
[N449:Sol2] in the case of $\lambda_{k}-1/2<\beta<\lambda_{k}+1$.
The obtained constant is not sharp.
Let $\mathbb{S}^{d-1}$ be the unit sphere in $\mathbb{R}^{d}$, $x'\in
\mathbb{S}^{d-1}$, and $dx'$ be the Lebesgue measure on the sphere.
Set $a_{k}^{-1}=\int_{\mathbb{S}^{d-1}}v_{k}(x')\,dx'$,
$d\omega_{k}(x')=a_{k}v_{k}(x')\,dx'$, and
$\|f\|_{2,d\omega_{k}}=\bigl(\int_{\mathbb{S}^{d-1}}|f(x')|^{2}\,d\omega_{k}(x')\bigr)^{1/2}$.
Let us denote by $\mathfrak{H}_{n}^{d}(v_{k})$ the subspace of
$k$-spherical harmonics of degree $n\in \mathbb{Z}_{+}$ in $L^{2} (\mathbb{S}^{d-1},d\omega_{k})$.
Let $\Delta_{k}f(x)=\sum_{j=1}^{d}D_{j}^{2}f(x)$ be the Dunkl Laplacian
and $\mathfrak{P}_{n}^{d}$ be
the space of homogeneous polynomials of degree $n$ in $\mathbb{R}^{d}$. Then
$\mathfrak{H}_{n}^{d}(v_{k})$ is the restriction of $\ker \Delta_{k}\cap
\mathfrak{P}_{n}^{d}$ to the sphere $\mathbb{S}^{d-1}$.
If $l_{n}$ is the dimension of $\mathfrak{H}_{n}^{d}(v_{k})$,
we denote by $\{Y_{n}^{j}\colon j=1,\ldots,l_{n}\}$ the real-valued orthonormal basis
$\mathfrak{H}_{n}^{d}(v_{k})$ in $L^{2}(\mathbb{S}^{d-1},d\omega_{k})$.
A union of these bases forms orthonormal basis in
$L^{2}(\mathbb{S}^{d-1},d\omega_{k})$ consisting of
$k$-spherical harmonics, i.e., we have
\begin{equation}\label{N449:eq7}
L^{2}(\mathbb{S}^{d-1},d\omega_{k})=\sum_{n=0}^{\infty}\oplus
\mathfrak{H}_{n}^{d}(v_{k}).
\end{equation}
Using \eqref{N449:eq7} and the following Funk-Hecke formula for $k$-spherical harmonic
$Y\in \mathfrak{H}_{n}^{d}(v_{k})$
\begin{equation*}
\int_{\S^{d-1}}Y(y')\overline{e_{k}(x,y')}\,d\omega_{k}(y')=
\frac{(-i)^{n}\Gamma(\lambda_{k}+1)}{2^{n}\Gamma(n+\lambda_{k}+1)}\,Y(x')r^{n}
j_{n+\lambda_{k}}(r),\qquad x=rx',
\end{equation*}
similarly to \eqref{N449:eq2} we have
the direct sum decomposition of $L^{2}(\mathbb{R}^{d},d\mu_{k})$:
\begin{equation*}
L^{2}(\mathbb{R}^{d},d\mu_{k})=\sum_{n=0}^{\infty}\oplus
\mathfrak{R}_{n}^{d}(v_{k}),\qquad
\mathfrak{R}_{n}^{d}(v_{k})=\mathfrak{R}_{0}^{d}\otimes
\mathfrak{H}_{n}^{d}(v_{k}),
\end{equation*}
and that the space $\mathfrak{R}_{n}^{d}(v_{k})$ is invariant under the Dunkl transform.
The next result provides a sharp constant in the Pitt inequality for the Dunkl transform \eqref{N449:eq3}.
\begin{etheorem}\label{N449:t2}
Let $\lambda_{k}= d/2-1+|k|$ and $0\le\beta<\lambda_{k}+1$, then
for $f\in S(\mathbb{R}^{d})$
we have
$$
C(\beta,k)=2^{-\beta}\,\frac{\Gamma(\frac{1}{2}(\lambda_{k}+1-\beta))}{\Gamma(\frac{1}{2}(\lambda_{k}+1+\beta))}.
$$
Sharpness of this inequality can be seen by considering radial functions.
\end{etheorem}
W. Beckner in [N449:Bec] proved the logarithmic uncertainty principle
for the Fourier transform using Pitt's inequality \eqref{N449:eq1}:
if $f\in S(\mathbb{R}^{d})$, then
$$
\int_{\mathbb{R}^{d}}\ln(|x|)|f(x)|^{2}\,dx+
\int_{\mathbb{R}^{d}}\ln(|y|)|\widehat{f}(y)|^{2}\,dy\ge
\biggl(\psi \biggl(\frac{d}{4}\biggr)+\ln
2\biggr)\int_{\mathbb{R}^{d}}|f(x)|^{2}\,dx,
$$
where $\psi(t)=d\ln \Gamma(t)/dt$ is the $\psi$-function.
For the Hankel transform the logarithmic uncertainty principle reads as follows (see [N449:Omr]): if
$f\in S(\mathbb{R}_+)$ and $\lambda\ge -1/2$, then
\begin{align*}
&\int_{\mathbb{R}_+}\ln(t)|f(t)|^{2}t^{2\lambda+1}\,dt+\int_{\mathbb{R}_+}
\ln(s)|\mathcal{H}_{\lambda}(f)(s)|^{2}s^{2\lambda+1}\,ds
\\
&\qquad
\ge \biggl(\psi \biggl(\frac{\lambda+1}{2}\biggr)+\ln
2\biggr)\int_{\mathbb{R}_+}|f(t)|^{2}t^{2\lambda+1}\,dt.
\end{align*}
For the one-dimensional Dunkl transform of functions $f\in S(\mathbb{R})$,
F. Soltani [N449:Sol1] has recently proved that
\begin{align*}
&\int_{\mathbb{R}}\ln(|t|)|f(t)|^{2}|t|^{2\lambda+1}\,dt+
\int_{\mathbb{R}}\ln(|s|)|\mathcal{F}_{\lambda}(f)(s)|^{2}|s|^{2\lambda+1}\,ds
\\
&\qquad
\ge \biggl(\psi \biggl(\frac{\lambda+1}{2}\biggr) +\ln
2\biggr)\int_{\mathbb{R}}|f(t)|^{2}|t|^{2\lambda+1}\,dt.
\end{align*}
Using Pitt's inequality \eqref{N449:eq3} we obtain the
logarithmic uncertainty principle for the multi-dimensional Dunkl transform.
\begin{etheorem}\label{N449:t3}
Let $\lambda_{k}= d/2-1+|k|$ and $f\in S(\mathbb{R}^{d})$.
We have
\begin{align*}
&\int_{\mathbb{R}^{d}}\ln(|x|)|f(x)|^{2}\,d\mu_{k}(x)
+\int_{\mathbb{R}^{d}}\ln(|y|)|\mathcal{F}_{k}(f)(y)|^{2}\,d\mu_{k}(y)
\\
&\qquad
\ge \biggl(\psi \biggl(\frac{\lambda_{k}+1}{2}\biggr)+\ln
2\biggr)\int_{\mathbb{R}^{d}}|f(x)|^{2}\,d\mu_{k}(x).
\end{align*}
\end{etheorem}
The work was supported by grants RFBR № 13-01-00043, № 13-01-00045,
Ministry of education and science of Russian Federation
№ 5414{\selectlanguage{russian}ГЗ}, № 1.1333.2014{\selectlanguage{russian}К},
Dmitry Zimin's Dynasty Foundation, MTM 2011-27637, 2014 SGR 289.
Дополнительные материалы:
abstract.pdf (193.2 Kb)
Язык доклада: английский
Список литературы
-
W. Beckner, “Pitt's inequality and uncertainty principle”, Proc. Amer. Math. Soc., 123 (1995), 1897–1905
-
D. R. Yafaev, “Sharp constants in the Hardy–Rellich inequalities”, J. Funct. Anal., 168:1 (1999), 121–144
-
S. Eilertsen, “On weighted fractional integral inequalities”, J. Funct. Anal., 185:1 (2001), 342–366
-
M. Rösler, “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135
-
L. De Carli, “On the $L^{p}$–$L^{q}$ norm of the Hankel transform and related operators”, J. Math. Anal. Appl., 348 (2008), 366–382
-
S. Omri, “Logarithmic uncertainty principle for the Hankel transform”, Int. Trans. Spec. Funct., 22:9 (2011), 655–670
-
F. Soltani, “Pitt's inequality and logarithmic uncertainty principle for the Dunkl transform on $\mathbb{R}$”, Acta Math. Hungar., 143:2 (2014), 480–490
-
F. Soltani, “Pitt's inequalities for the Dunkl transform on $\mathbb{R}^{d}$”, Int. Trans. Spec. Funct., 25:9 (2014), 686–696
|
|