|
|
Международная конференция по функциональным пространствам и теории приближения функций, посвященная 110-летию со дня рождения академика С. М. Никольского
27 мая 2015 г. 14:55–15:20, Дифференциальные уравнения. I, г. Москва, МИАН
|
|
|
|
|
|
On spherical functions connected with a general PDE of the second order in the unit ball
V. P. Burskiiab a Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk
b Moscow Institute of Physics and Technology
|
|
Аннотация:
The report is devoted to a connection between the Dirichlet problem in the unit ball
for a general PDE of the second order and spherical functions which are zero on null-variety of the PDE-symbol.
Let $L=L(x,D)=\sum_{|\alpha |\le 2}a_\alpha D^\alpha$
be a general linear differential operation with constant coefficients,
which can be complex-valued or matrix, and let $\Omega \subset \mathbb R^n$ be a
bounded domain with smooth boundary $\partial \Omega $.
Let us consider the Dirichlet problem
\begin{equation}
\label{443:eq1}
Lu=f,\qquad u|_{\partial \Omega }=0
\end{equation}
in the Sobolev space $W^2_2(\Omega)$. We extend functions $f$ and $u$
by zero: $\widetilde u=u$ in $\Omega$, $\widetilde u=0$ outside of $\Omega$. Then
\begin{equation}
\label{443:eq2}
L\widetilde u=\widetilde f+L_{1}u\delta_{\partial \Omega },
\end{equation}
where $L_{1}u$ is a linear differential expression on $\psi$
and $u_\nu ^{\prime }\langle \delta _{\partial \Omega },\varphi \rangle
=\int_{\partial \Omega }\overline{\varphi }\,ds$.
Let the domain $\Omega $ be defined by means of the inequality $P(x)>0$ where
$P\in \mathbb R[x]$ is a polinomial, $|\nabla P|_{P=0}\neq 0$. We multiply
equality \eqref{443:eq2} by $P(x)$ and apply the Fourier transform. We obtain
\begin{equation}
\label{443:eq3}
P(-D_\xi )[L(\xi )F(\widetilde u\mspace{1mu})(\xi )]=g(\xi )
\end{equation}
with a known function $g$. Here $L(\xi) $ is the symbol and $L_2(\xi) $ is the major symbol.
Statement.
The solvability of the last equation in some
classes of entire functions is equivalent to the solvability of problem \eqref{443:eq1}.
If the domain is the unit ball, then $P(-D_\xi)=\Delta_\xi$ and if, moreover, the right-hand side $f=0$, then $g=0$
and for the uniqueness problem in problem \eqref{443:eq1} we obtain the equivalent problem of the following form:
$(\Delta_\xi+1)[L_2(\xi)v(\xi)]=0$. Now for lowest term $v_m(\xi)$ of the power series for $v$ we have
the equation $\Delta_\xi[L_2(\xi)v_m(\xi)]=0$.
The application of this methods gives, in particular, the following results.
Let us consider
$$
Lu=u_{ x_1x_1}+\dots +u_{ x_kx_k}-a^2(u_{ x_{k+1}x_{k+1}}+\dots +u_{ x_nx_n}).
$$
\begin{estatement}
Problem \eqref{443:eq1} with $f=0$ has a nontrivial solution in $W_2^2({\Omega})$
if and only if there exist natural numbers $m$, $i$, $j$, $i+j\leqslant m$ such that
- 1) $m-i-j$ even and
$$
P^{(\frac{n-k}{2}+j-1, i+\frac{k}{2}-1)}_{\frac{m-i-j}{2}+1}
\biggl(\frac{a^2-1}{a^2+1}\biggr)=0
$$
or
- 2) $m+n-k-i+j$ even and
$$
P^{(1-j-\frac{n-k}{2}, i+\frac{k}{2}-1)}_{\frac{m+n-k-i+j}{2}}
\biggl(\frac{a^2-1}{a^2+1}\biggr)=0
$$
or
- 3) $m+n+i+j$ even and
$$
P^{(1-j-\frac{n-k}{2}, 1-i-\frac{k}{2})}_{\frac{m+n+i+j}{2}-1}
\biggl(\frac{a^2-1}{a^2+1}\biggr)=0
$$
or
- 4) $m+k+i-j$ even and
$$
P^{(\frac{n-k}{2}+j-1, 1-i-\frac{k}{2})}_{\frac{m+k+i-j}{2}}
\biggl(\frac{a^2-1}{a^2+1}\biggr)=0,
$$
where $P^{(\alpha,\beta)}_N (x)$ is the Jacoby polynomial.
\end{estatement}
For the case $n=2$
the result conforms with the well-known result for the string equation.
There is also an application of these results to problems of the interal geometry.
Дополнительные материалы:
abstract.pdf (106.9 Kb)
Язык доклада: английский
|
|