|
|
Международная конференция по функциональным пространствам и теории приближения функций, посвященная 110-летию со дня рождения академика С. М. Никольского
25 мая 2015 г. 15:20–15:45, Функциональные пространства, г. Москва, МИАН
|
|
|
|
|
|
Nikolskii-type inequalities for algebra polynomials in regions with cusps
F. Abdullayev, N. Özkartepe Mersin University, Turkey
|
Количество просмотров: |
Эта страница: | 246 | Материалы: | 52 |
Фотогалерея
|
Аннотация:
Let $G$ $\subset\mathbb{C}$ be a finite Jordan region,
with $0\in G$, $L:=\partial G$; $\ P_{n}(z)$,
$\deg P_{n}\leq n$, $n\in\mathbb{N}$, be an arbitrary
algebraic polynomials and let $h(z)$ be a weight function.
For $p>0$ we denote by $A_{p}(h,G)$ the class of analytic in
$G$ functions $f$ such that
$$
\iint_{G}h(z)|f(z)|^{p}\,dx\,dy<\infty,\qquad z=x+iy;
$$
and, when $L$ is rectifiable, by $\mathcal{L}_{p}(h,L)$, $p>0$, the
class of measurable on $L$ functions $f$ such that
$$
\int_{L}h(z)|f(z)|^{p}\,|dz|<\infty.
$$
In this work, we study the Nikol'skii-type inequalities for algebraic
polynomials $P_{n}(z)$ and pointwise estimations for these polynomials in
various regions of the complex plane through their $A_{p}(h,G)$ and
$\mathcal{L}_{p}(h,L)$-norms, depending on the geometrical properties of
regions and generalized Jacobi weight function $h(z)$ for some Jordan
regions of complex plane.
Дополнительные материалы:
abstract.pdf (88.6 Kb)
Язык доклада: английский
Список литературы
-
F. G. Abdullayev, “On the some properties of the orthogonal polynomials over the region of the complex plane (Part III)”, Ukr. Math. J., 53:12 (2001), 1934–1948
-
E. Hille, G. Szegö, J. D. Tamarkin, “On some generalization of a theorem of A. Markoff”, Duke Math., 3 (1937), 729–739
-
N. Stylianopoulos, “Fine asymptotics for Bergman orthogonal polynomials over domains with corners”, CMFT 2009 (Ankara, June 2009)
-
J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, AMS, 1960
|
|