|
|
Санкт-Петербургский семинар по теории операторов и теории функций
30 марта 2015 г. 17:30–19:00, г. Санкт-Петербург, ПОМИ, ауд. 311 (наб. р. Фонтанки, 27)
|
|
|
|
|
|
Операторы Шредингера с комплексным потенциалом на кубической решетке
( по совместной работе с А.Лаптевым и Я.Молером)
Е. Л. Коротяев |
Количество просмотров: |
Эта страница: | 171 |
|
Аннотация:
Schrodinger operators with complex potentials on the cubic lattice
We consider the Laplacian $\mathbb D$ on the lattice $\mathbb Z^d, d\ge 3$ and
estimate the group $e^{it\mathbb D}$ and the resolvent $(\mathbb D-\mathbb l)^{-1}$ in
the weighted spaces. The proof of the resolvent estimates is based
on the investigation of the kernel of the resolvent. We obtain the
estimate of the kernel of the resolvent $(\mathbb D-\mathbb l)^{-1}$ and their
Hölder type estimates. We apply the obtained results to
Schrödinger operators with real potentials and describe the scattering.
Moreover, we consider Schrödinger operators with complex decaying
potentials on the lattice. We determine the trace formulas and
estimate globally all zeros of the Fredholm determinant in terms
of the potential.
|
|