Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Workshop “Frontiers of High Dimensional Statistics, Optimization, and Econometrics”
27 февраля 2015 г. 14:30–15:00, Москва, ВШЭ, Шаболовская 26, корпус 3, ауд. 3211
 




[Efficiency of regression conformalization]

Е. В. Бурнаев

Московский физико-технический институт (государственный университет), г. Долгопрудный Московской обл.

Количество просмотров:
Эта страница:290
Youtube:



Аннотация: Conformal prediction is a method of producing prediction sets that can be applied on top of a wide range of prediction algorithms. The method has a guaranteed coverage probability under the stan- dard IID assumption regardless of whether the assumptions (often considerably more restrictive) of the underlying algorithm are satisfied. However, for the method to be really useful it is desir- able that in the case where the assumptions of the underlying algorithm are satisfied, the conformal predictor loses little in efficiency as compared with the underlying algorithm (whereas being a con- formal predictor, it has the stronger guarantee of validity). In this work we explore the degree to which this additional requirement of efficiency is satisfied in the case of Bayesian ridge regression; we find that asymptotically conformal prediction sets differ little from ridge regression prediction intervals when the standard Bayesian assumptions are satisfied.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024