Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Workshop “Frontiers of High Dimensional Statistics, Optimization, and Econometrics”
27 февраля 2015 г. 12:30–13:00, Москва, ВШЭ, Шаболовская 26, корпус 3, ауд. 3211
 




[Random gradient-free methods for random walk based web page ranking functions learning]

П. Е. Двуреченский

Московский физико-технический институт (государственный университет), г. Долгопрудный Московской обл.

Количество просмотров:
Эта страница:186
Youtube:



Аннотация: In this talk we consider a problem of web page relevance to a search query. We are working in the framework called Semi-Supervised PageRank which can account for some properties which are not considered by classical approaches such as PageRank and BrowseRank algorithms. We introduce a graphical parametric model for web pages ranking. The goal is to identify the unknown parameters using the information about page relevance to a number of queries given by some experts (assessors). The resulting problem is formulated as an optimization one. Due to hidden huge dimension of the last problem we develop random gradient-free methods with oracle error to solve it. We prove the convergence theorem and give the number of arithmetic operations which is needed to solve it with a given accuracy. This is a joint work with A. Gasnikov and M. Zhukovskii.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024