Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Дифференциальная геометрия и приложения
16 февраля 2015 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-10
 


Поверхности с локально-евклидовой метрикой и тривиальное уравнение Монжа-Ампера

И. Х. Сабитов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:263

Аннотация: Двумерные достаточно регулярные поверхности с локально-евклидовой (л.е.) метрикой в $\mathbb R^3$ обычно называются развертывающимися поверхностями и они имеют стандартное строение с прямолинейными образующими со стационарной вдоль них касательной плоскостью. Однако с точки зрения гладкости самой системы образующих не все обстоит так просто.
Доклад будет состоять из двух частей. В первой части мы расскажем об описании развертывающихся поверхностей с малой гладкостью, а во второй части расскажем о решениях тривиального уравнения Монжа-Ампера
$$ z_{xx}z_{yy}-z_{xy}^2=0 $$
с изолированными особенностями.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024