Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Научно-исследовательский семинар кафедры дискретной математики ФИВТ МФТИ
21 апреля 2015 г., г. Москва, Яндекс, ауд. 7. Вода-на-киселе
 


Гипотеза, обобщающая теорему Абеля-Руффини на случай многих переменных: идеи доказательства

Г. Г. Гусев

Аннотация: Мы обобщили на случай многих переменных классическую теорему Абеля о том, что комплексные корни многочлена степени $>4$ от одной переменной нельзя выразить в радикалах через его коэффициенты. Сначала я расскажу о топологической теории Галуа, которая позволяет доказать неразрешимость уравнения, если ее группа монодромии совпадает с группой перестановок корней уравнения. Эта теория моментально обобщается на случай системы из $n$ полиномиальных уравнений от $n$ переменных. Недавно нам удалось разобраться, в каких случаях группа монодромии системы уравнений совпадает с группой перестановок ее решений. Оказалось, что за исключением тех случаев, когда система сводится к уравнениям одной переменной степени не выше 4, группа монодромии системы совпадает с группой перестановок множества ее решений, и она неразрешима.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025