Loading [MathJax]/jax/output/SVG/config.js
Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
27 января 2015 г. 16:00, г. Москва, ИППИ РАН (Большой Каретный пер., 19), ауд.615, Москва
 


Дискретные конформные отображения и римановы поверхности (Публичная лекция в рамках Математического дня ИППИ РАН)

А. И. Бобенко

Institut für Mathematik, Technische Universität Berlin

Количество просмотров:
Эта страница:258

А. И. Бобенко

Аннотация: Дискретная дифференциальная геометрия - это наука о дискретных моделях гладких геометрических объектов, которым присущи определенные свойства или структуры их дифференцируемых "старших братьев". В лекции речь пойдет главным образом о дискретном варианте конформной эквивалентности для полиэдральных метрик. Две триангулированные поверхности называются дискретно конформно эквивалентными, если масштабные коэффициенты (отношения длин соответственных ребер) связаны с вершинами. Это простое определение оказывается исходной точкой удивительно богатой теории, в которой возникают инвариантность Мебиуса, определение дискретных конформных отображений как кусочно-проективных отображений, сохраняющих окружности, а также выпуклые вариационные принципы. Мы покажем, что существует соответствие между конформной геометрией триангулированных поверхностей и геометрией идеальных гиперболических полиэдров. Этот синтез позволит построить и соответствующую теорию дискретной униформизации римановых поверхностей. Будут представлены приложения к построению сетей конечных элементов и вычислениям над ними (geometry processing), а также к компьютерной графике.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025