|
|
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
14 января 2015 г. 14:00, г. Москва, МИАН
|
|
|
|
|
|
Darboux transformations and integrable differential–difference
equations associated with Kac–Moody Lie algebras
A. V. Mikhailovab a University of Leeds, School of Mathematics
b Skolkovo Institute of Science and Technology
|
Количество просмотров: |
Эта страница: | 335 |
|
Аннотация:
It is well known that with every Kac–Moody Lie algebra one can
associate an integrable two dimensional Toda type system. In paticular
the sinh-Gordon equation corresponds to the algebra $A_1^{(1)}$,
the Tzitzeica equation to $A_2^{(2)}$, the usual periodic Toda lattice to
$A_n^{(1)}$, etc. In our work we construct integrable chains of
B"acklund transformations for Toda type systems associated with
the classical families of Kac–Moody algebras and derive Darboux
transformations for the corresponding Lax operators.
We also discuss integrable finite difference systems corresponding
to the Bianchi permutability of the Bäcklund transformations.
Язык доклада: английский
|
|