Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Петербургский топологический семинар им. В. А. Рохлина
15 декабря 2014 г. 17:30–19:00, г. Санкт-Петербург, ПОМИ, комн. 311 (наб. р. Фонтанки, 27)
 


On knots transverse to a vector field

В. В. Чернов

Department of Mathematics, Dartmouth College

Количество просмотров:
Эта страница:143

Аннотация: We classify knots in a 3-manifold $M$ that are transverse to a nowhere zero vector field $V$ up to the corresponding isotopy relation. When $V$ is the coorienting vector field of a contact structure, these knots are the same as pseudo-Legendrian knots, which were introduced by Benedetti and Petronio.
We show that two loose Legendrian knots with the same overtwisted disk in their complement are Legendrian isotopic if and only if they are pseudo-Legendrian isotopic.
$V$-transverse knots are naturally framed. We show that each framed isotopy class corresponds to infinitely many $V$-transverse isotopy classes whose elements are pairwise distinct up to $V$-transverse homotopy, provided that one of the following conditions holds:
$V$ is a coorienting vector field of a tight contact structure;
the manifold $M$ is irreducible and atoroidal;
or, the Euler class of a 2-dimensional bundle orthogonal to $V$ is a torsion class.
We also give examples of infinite sets of distinct $V$-transverse isotopy classes whose representatives are all $V$-transverse homotopic and framed isotopic.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024