Аннотация:
Человечество вступило в эпоху больших данных - время, когда объем доступной для анализа информации нарастает на порядки быстрее чем вычислительные мощности. Традиционные математические методы и модели в такой ситуации становятся неприменимы. Необходимо создание "новой математики", адаптированной под новые соотношения между данными и вычислительными ресурсами. Как можно хранить и обрабатывать многомерные массивы в линейных по памяти структурах? Что дает обучение нейронных сетей из триллионов триллионов нейронов и как можно осуществить его без переобучения? Можно ли обрабатывать информацию "на лету", не сохраняя поступающие последовательно данные? Как оптимизировать функцию за время меньшее чем уходит на ее вычисление в одной точке? Что дает обучение по слаборазмеченным данным? И почему для решения всех перечисленных выше задач надо хорошо знать математику? Ответы на эти вопросы будут рассмотрены в докладе.