Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя математическая школа «Алгебра и геометрия», 2011
4 августа 2011 г. 09:30–11:00, г. Ярославль
 


Алгебраические торы: алгебра, геометрия, арифметика II

Б. Э. Кунявский
Видеозаписи:
Flash Video 433.4 Mb
MP4 786.8 Mb

Количество просмотров:
Эта страница:185
Видеофайлы:54



Аннотация: 1. Основные понятия: когомологии Галуа, формы алгебраических многообразий, группы мультипликативного типа, ограничение скаляров по А.Вейлю.
2. Алгебра: модули характеров тора, перестановочные модули, вялые и ковялые модули, вялые и ковялые резольвенты, когомологические инварианты, связи с целочисленными представлениями конечных групп.
3. Геометрия: проблемы рациональности и нерациональности, бирациональные инварианты тора, стабильная эквивалентность и проблема Зарисского, связи с проблемой Нётер, общие торы в простых группах.
4. Арифметика: принцип Хассе и слабая аппроксимация, арифметические инварианты торов и их связи с когомологиями Галуа и группой Брауэра. Литература
[1] В. Е. Воскресенский, Алгебраические торы, М., Наука, 1977. [2] V. E. Voskresenskii, Algebraic Groups and Their Birational Invariants, Amer. Math. Soc., Providence, RI, 1998. [3] В. Е. Воскресенский, Бирациональная геометрия линейных алгебраических групп, М., МЦНМО, 2009. [4] B. Kunyavskii, Algebraic tori - thirty years after, Vestnik Samara State Univ. (2007), no. 7, 198-214.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024