|
Проблемы передачи информации, 2003, том 39, выпуск 4, страницы 3–9
(Mi ppi311)
|
|
|
|
Эта публикация цитируется в 18 научных статьях (всего в 18 статьях)
Теория информации и теория кодирования
Асимптотическая верхняя граница для скорости кодов, свободных от
$(w,r)$-перекрытий
В. С. Лебедев Институт проблем передачи информации РАН
Аннотация:
Двоичный код называется кодом, свободным от $(w,r)$-перекрытий, если он
является матрицей инцидентности семейства множеств, для которого пересечение
любых $w$ множеств не покрывается объединением $r$ любых других множеств.
Такое семейство называется семейством, свободным от $(w,r)$-перекрытий
(cover free $(w,r)$-family). Получено новое рекуррентное неравенство для скорости
кодов, свободных от $(w,r)$-перекрытий, которое позволяет улучшить ранее
известные верхние границы этой скорости.
Поступила в редакцию: 01.10.2002 После переработки: 07.02.2003
Образец цитирования:
В. С. Лебедев, “Асимптотическая верхняя граница для скорости кодов, свободных от
$(w,r)$-перекрытий”, Пробл. передачи информ., 39:4 (2003), 3–9; Problems Inform. Transmission, 39:4 (2003), 317–323
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ppi311 https://www.mathnet.ru/rus/ppi/v39/i4/p3
|
Статистика просмотров: |
Страница аннотации: | 544 | PDF полного текста: | 233 | Список литературы: | 47 |
|