|
Теория кодирования
Улучшение верхних границ скоростей разделяющих и полностью разделяющих кодов
И. В. Воробьевa, В. С. Лебедевb a Сколковский институт науки и технологий (Сколтех), Москва
b Институт проблем передачи информации им. А.А. Харкевича РАН, Москва
Аннотация:
Двоичный код называется $(s,\ell)$-разделяющим кодом, если для любых двух непересекающихся наборов его слов мощности не более $s$ и $\ell$ соответственно существует координата, в которой все слова из одного набора имеют символ $0$, а все слова из другого набора имеют символ $1$. Если же вдобавок для любых наборов существует вторая координата, в которой у первого набора во всех словах стоят $1$, а у второго стоят $0$, то такой код называется $(s,\ell)$-полностью разделяющим кодом. В статье улучшаются верхние границы скоростей разделяющих и полностью разделяющих кодов.
Ключевые слова:
разделяющие коды, полностью разделяющие коды, асимптотическая скорость, граница Плоткина.
Поступила в редакцию: 14.04.2022 После переработки: 28.07.2022 Принята к печати: 30.07.2022
Образец цитирования:
И. В. Воробьев, В. С. Лебедев, “Улучшение верхних границ скоростей разделяющих и полностью разделяющих кодов”, Пробл. передачи информ., 58:3 (2022), 45–57
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ppi2374 https://www.mathnet.ru/rus/ppi/v58/i3/p45
|
|