|
Проблемы физики, математики и техники, 2012, выпуск 3(12), страницы 88–93
(Mi pfmt56)
|
|
|
|
МАТЕМАТИКА
Численное моделирование равновесных капиллярных поверхностей с нерегулярными граничными условиями
В. К. Полевиков, Ю. Н. Волотовская Белорусский государственный университет, Минск
Аннотация:
Предлагается алгоритм численного моделирования равновесных капиллярных поверхностей с нерегулярными условиями контакта. Он представляет собой комбинацию итерационно-разностного метода решения краевой задачи и метода Рунге-Кутты решения начальной задачи для моделирования равновесных форм капиллярной поверхности, опирающейся на линию излома твердой стенки. Алгоритм апробирован на известной задаче капиллярной гидростатики о жидкости, вытекающей из капилляра.
Ключевые слова:
капиллярная поверхность, параметрические дифференциальные уравнения, нерегулярные граничные
условия, численное моделирование, вычислительный алгоритм, численные результаты.
Поступила в редакцию: 20.04.2012
Образец цитирования:
В. К. Полевиков, Ю. Н. Волотовская, “Численное моделирование равновесных капиллярных поверхностей с нерегулярными граничными условиями”, ПФМТ, 2012, № 3(12), 88–93
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pfmt56 https://www.mathnet.ru/rus/pfmt/y2012/i3/p88
|
|