|
Дискретные функции
Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation
D. A. Zyubinaabc, N. N. Tokarevaab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c JetBrains Research
Аннотация:
We propose a simple method of constructing S-boxes using Boolean functions and permutations. Let $\pi$ be an arbitrary permutation on $n$ elements, $f$ be a Boolean function in $n$ variables. Define a vectorial Boolean function $F_{\pi}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ as $F_{\pi}(x) = (f(x), f(\pi(x)), f(\pi^2(x)), \ldots, f(\pi^{n-1}(x)))$. We study cryptographic properties of $F_{\pi}$ such as high nonlinearity, balancedness, low differential $\delta$-uniformity in dependence on properties of $f$ and $\pi$ for small $n$.
Ключевые слова:
Boolean function, vectorial Boolean function, S-box, high nonlinearity, balancedness, low differential $\delta$-uniformity, high algebraic degree.
Образец цитирования:
D. A. Zyubina, N. N. Tokareva, “Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation”, ПДМ. Приложение, 2020, no. 13, 41–43
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdma493 https://www.mathnet.ru/rus/pdma/y2020/i13/p41
|
Статистика просмотров: |
Страница аннотации: | 160 | PDF полного текста: | 74 | Список литературы: | 16 |
|