|
Дискретные функции
Условия существования векторной булевой функции с максимальной компонентной алгебраической иммунностью
Д. П. Покрасенко Механико-математический факультет Новосибирского государственного университета, г. Новосибирск
Аннотация:
Исследуется максимальная компонентная алгебраическая иммунность и её связь с матрицами специального вида. Получены ограничения на значения $n,m$, при которых возможно существование векторной булевой функции $F\colon\mathbb Z_2^n\to\mathbb Z_2^m$ с максимальной компонентной алгебраической иммунностью.
Ключевые слова:
векторная булева функция, компонентная алгебраическая иммунность.
Образец цитирования:
Д. П. Покрасенко, “Условия существования векторной булевой функции с максимальной компонентной алгебраической иммунностью”, ПДМ. Приложение, 2016, № 9, 30–32
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdma292 https://www.mathnet.ru/rus/pdma/y2016/i9/p30
|
Статистика просмотров: |
Страница аннотации: | 149 | PDF полного текста: | 56 | Список литературы: | 24 |
|