|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Теоретические основы прикладной дискретной математики
$\otimes_{\mathbf W,\mathrm{ch}}$-марковские преобразования
Б. А. Погореловa, М. А. Пудовкинаb a Академия криптографии Российской Федерации, г. Москва
b Национальный исследовательский ядерный университет "МИФИ", г. Москва
Аннотация:
Разностный криптоанализ итеративных алгоритмов блочного шифрования с алфавитом текстов $X$, как правило, проводится в рамках марковской модели. При этом фиксируется регулярная абелева группа $(X,\otimes)$ и используется тот факт, что для $\otimes$-марковских алгоритмов блочного шифрования последовательность разностей (относительно операции $\otimes$) пар промежуточных шифртекстов $i$-го раунда, $i=1,2,\dots$, образует цепь Маркова. В работе рассматриваются $\otimes$-марковские алгоритмы блочного шифрования, у которых существует укрупнение состояний цепи Маркова до блоков разбиения $\mathbf W$, также являющееся цепью Маркова. Такие алгоритмы блочного шифрования, а также подстановки на $X$ вместе с операцией $\otimes$ наложения ключа, задающие раундовую функцию алгоритма шифрования, названы $\otimes_{\mathbf W,\mathrm{ch}}$-марковскими. Получены условия на блоки разбиения $\mathbf W$ и элементы матрицы разностей переходов раундовой функции, при которых алгоритм блочного шифрования является $\otimes_{\mathbf W,\mathrm{ch}}$-марковским. Приведены преобразования, основанные на операциях экспоненцирования и логарифмирования в кольце вычетов $\mathbb Z_n$ и поле $\mathrm{GF}(n+1)$, а также указаны разбиения $\mathbf W$, при которых данные преобразования являются $ +_{\mathbf W,\mathrm{ch}}$-марковскими относительно соответствующей операции сложения $+$ в кольце или поле.
Ключевые слова:
марковский алгоритм блочного шифрования, цепи Маркова, метод усечённых разностей, экспоненциальные преобразования.
Образец цитирования:
Б. А. Погорелов, М. А. Пудовкина, “$\otimes_{\mathbf W,\mathrm{ch}}$-марковские преобразования”, ПДМ. Приложение, 2015, № 8, 17–19
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdma237 https://www.mathnet.ru/rus/pdma/y2015/i8/p17
|
Статистика просмотров: |
Страница аннотации: | 189 | PDF полного текста: | 56 | Список литературы: | 39 |
|