|
Теоретические основы прикладной дискретной математики
Equations over direct powers of algebraic structures in relational languages
A. Shevlyakovab a Sobolev Institute of Mathematics SB RAS, Omsk, Russian Federation
b Omsk State Technical University, Omsk, Russian Federation
Аннотация:
For a semigroup $S$ (group $G$) we study relational equations and describe all semigroups $S$ with equationally Noetherian direct powers. It follows that any group $G$ has equationally Noetherian direct powers if we consider $G$ as an algebraic structure of a certain relational language. Further we specify the results as follows: if a direct power of a finite semigroup $S$ is equationally Noetherian, then the minimal ideal $\text{Ker}(S)$ of $S$ is a rectangular band of groups and $\text{Ker}(S)$ coincides with the set of all reducible elements.
Ключевые слова:
relations, groups, semigroups, direct powers, equationally Noetherian algebraic structures.
Образец цитирования:
A. Shevlyakov, “Equations over direct powers of algebraic structures in relational languages”, ПДМ, 2021, no. 53, 5–11
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdm743 https://www.mathnet.ru/rus/pdm/y2021/i3/p5
|
Статистика просмотров: |
Страница аннотации: | 102 | PDF полного текста: | 46 | Список литературы: | 20 |
|