|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Математические методы криптографии
Problems in theory of cryptanalytical invertibility of finite automata
G. P. Agibalov National Research Tomsk State University, Tomsk, Russia
Аннотация:
The paper continues an investigation of the cryptanalytical invertibility concept of finite automata with a finite delay introduced by the author in his previous papers where he also gave a constructive set theory test for an automaton $A$ to be cryptanalytically invertible, that is, to have a recovering function $f$ which allows to calculate a prefix of a length $m$ in an input sequence of the automaton $A$ by using its output sequence of a length $m+\tau$ and some additional information about $A$ known to cryptanalysts, defining a type of its invertibility and of its recovering functon. Here, we expound a test for that of another kind, namely some logical necessary and sufficient conditions for an automaton $A$ to have or not a recovering function $f$ of a certain type. Results related to specific types of automata invertibility (invertibility tests, inversion algorithms, synthesis of inverse automata and others) are subjects of further researching and publications.
Ключевые слова:
finite automata, information-lossless automata, automata invertibility, recovering function, cryptanalytical invertibility, cryptanalytical invertibility conditions.
Образец цитирования:
G. P. Agibalov, “Problems in theory of cryptanalytical invertibility of finite automata”, ПДМ, 2020, no. 50, 62–71
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdm722 https://www.mathnet.ru/rus/pdm/y2020/i4/p62
|
Статистика просмотров: |
Страница аннотации: | 98 | PDF полного текста: | 51 | Список литературы: | 13 |
|