|
Вычислительные методы в дискретной математике
Вычисление детерминанта и произведения матриц в структуре клеточного автомата
В. С. Кожевниковa, И. В. Матюшкинb a Московский физико-технический институт
(Национальный исследовательский университет), г. Долгопрудный, Россия
b Национальный исследовательский университет
«Московский институт электронной техники», г. Москва, Россия
Аннотация:
Приведено формальное описание двумерных клеточных автоматов, реализующих умножение матриц и нахождение определителя. Все алгоритмы даны для границ с замыканием, шаблона окрестности Неймана и закрытых вычислений (т. е. данные не вводятся в процессе расчёта). Отдельно реализовано умножение матрицы на вектор-столбец. Для вычисления определителя предложены два алгоритма, основанные на методе Гаусса. Один имеет линейную сложность и использует управляющий флаг с пятью состояниями, однако применим не ко всякой матрице. Другой работает для любой матрицы, но имеет квадратичную сложность и его управляющий флаг принимает одиннадцать состояний.
Ключевые слова:
клеточный автомат, определитель, детерминант, умножение матриц, параллельные вычисления.
Образец цитирования:
В. С. Кожевников, И. В. Матюшкин, “Вычисление детерминанта и произведения матриц в структуре клеточного автомата”, ПДМ, 2019, № 46, 88–107
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdm687 https://www.mathnet.ru/rus/pdm/y2019/i4/p88
|
Статистика просмотров: |
Страница аннотации: | 186 | PDF полного текста: | 234 | Список литературы: | 17 |
|