|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Математические методы криптографии
Cryptanalytical finite automaton invertibility with finite delay
G. P. Agibalov National Research Tomsk State University, Tomsk, Russia
Аннотация:
The paper continues an investigation of the cryptanalytical invertibility concept with a finite delay introduced by the author for finite automata. Here, we expound an algorithmic test for an automaton $A$ to be cryptanalytically invertible with a finite delay, that is, to have a recovering function $f$ which allows to calculate a prefix of a length $m$ in an input sequence of the automaton $A$ by using its output sequence of a length $m+\tau$ and some additional information about $A$ defining a type of its invertibility and known to cryptanalysts. The test finds out whether the automaton $A$ has a recovering function $f$ or not and if it has, determines some or, may be, all of such functions. The test algorithm simulates a backtracking method for searching a possibility to transform a binary relation to a function by shortening its domain to a set corresponding to the invertibility type under consideration.
Ключевые слова:
finite automata, information-lossless automata, automata invertibility, cryptanalytical invertibility, cryptanalytical invertibility test.
Образец цитирования:
G. P. Agibalov, “Cryptanalytical finite automaton invertibility with finite delay”, ПДМ, 2019, no. 46, 27–37
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdm682 https://www.mathnet.ru/rus/pdm/y2019/i4/p27
|
Статистика просмотров: |
Страница аннотации: | 183 | PDF полного текста: | 1158 | Список литературы: | 23 |
|