|
Теоретические основы прикладной дискретной математики
On irreducible algebraic sets over linearly ordered semilattices II
A. N. Shevlyakovab a Sobolev Institute of Mathematics, Omsk, Russia
b Omsk State Technical University, Omsk, Russia
Аннотация:
Equations over finite linearly ordered semilattices are studied. It is assumed that the order of a semilattice is not less than the number of variables in an equation. For any equation $t(X)=s(X)$, we find irreducible components of its solution set. We also compute the average number $\overline{\mathrm{Irr}}(n)$ of irreducible components for all equations in $n$ variables. It turns out that $\overline{\mathrm{Irr}}(n)$ and the function $\frac49n!$ are asymptotically equivalent.
Ключевые слова:
irreducible components, algebraic sets, semilattices.
Образец цитирования:
A. N. Shevlyakov, “On irreducible algebraic sets over linearly ordered semilattices II”, ПДМ, 2017, no. 38, 49–56
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pdm605 https://www.mathnet.ru/rus/pdm/y2017/i4/p49
|
Статистика просмотров: |
Страница аннотации: | 137 | PDF полного текста: | 50 | Список литературы: | 42 |
|