|
Integrability of $q$-Bessel Fourier transforms with Gogoladze–Meskhia type weights
Yu. I. Krotova Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
Аннотация:
In the paper, we consider the $q$-integrability of functions $\lambda(t)|\mathcal F_{q, \nu}(f)(t)|^r$, where $\lambda(t)$ is a Gogoladze-Meskhia-Moricz type weight and $\mathcal F_{q, \nu}(f)(t)$ is the $q$-Bessel Fourier transforms of a function $f$ from generalized integral Lipschitz classes. There are some corollaries for power type and constant weights, which are analogues of classical results of Titchmarsh et al. Also, a $q$-analogue of the famous Herz theorem is proved.
Ключевые слова:
$q$-Bessel Fourier transform, $q$-Bessel translation, modulus of smoothness, weights of Gogoladze–Meskhia type, $q$-Besov space.
Поступила в редакцию: 19.08.2023 Исправленный вариант: 30.11.2023 Принята в печать: 15.02.2024
Образец цитирования:
Yu. I. Krotova, “Integrability of $q$-Bessel Fourier transforms with Gogoladze–Meskhia type weights”, Пробл. анал. Issues Anal., 13(31):1 (2024), 24–36
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa389 https://www.mathnet.ru/rus/pa/v31/i1/p24
|
|