|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Statistical bounded sequences of bi-complex numbers
S. Bera, B. Ch. Tripathy Department of Mathematics, Tripura University,
Suryamaninagar, Agartala-799022, Tripura(W), India
Аннотация:
In this paper, we extend statistical bounded sequences of real or complex numbers to the setting of sequences of bi-complex numbers. We define the statistical bounded sequence space of bi-complex numbers $b_{\infty}^{*}$ and also define the statistical bounded sequence spaces of ideals $\mathbb{I}_{\infty}^{1}$ and $\mathbb{I}_{\infty}^{2}$. We prove some inclusion relations and provide examples. We establish that $b_{\infty}^{*}$ is the direct sum of $\mathbb{I}_{\infty}^{1}$ and $ \mathbb{I}_{\infty}^{2}$. Also, we prove the decomposition theorem for statistical bounded sequences of bi-complex numbers. Finally, summability properties in the light of J.A. Fridy's work are studied.
Ключевые слова:
natural density, bi-complex, statistical bounded, norm.
Поступила в редакцию: 08.01.2023 Исправленный вариант: 21.05.2023 Принята в печать: 12.05.2023
Образец цитирования:
S. Bera, B. Ch. Tripathy, “Statistical bounded sequences of bi-complex numbers”, Пробл. анал. Issues Anal., 12(30):2 (2023), 3–16
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa372 https://www.mathnet.ru/rus/pa/v30/i2/p3
|
|