|
Boundary-value problems for the inhomogeneous Schrödinger equation with variations of its potential on non-compact Riemannian manifolds
E. A. Mazepa, D. K. Ryaboshlykova Volgograd State University, 100 Universitetsky pr., Volgograd 400062, Russia
Аннотация:
We study solutions of the inhomogeneous Schrödinger equation $\Delta u-c(x)u=g(x)$, where $c(x)$, $g(x)$ are Hölder functions, with variations of its potential $ c(x)\geq 0 $ on a noncompact Riemannian manifold $M$. Our technique essentially relies on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with introduction of equivalency classes of functions. It made it possible to formulate boundary-value problems on $M$ independently from a natural geometric compactification. In the present work, we obtain conditions under which the solvability of boundary-value problems of the inhomogeneous Schrödinger equation is preserved for some variations of the coefficient $c(x) \geq 0$ on $M$.
Ключевые слова:
inhomogeneous Schrödinger equation, variations of coefficients, boundary-value problems, Riemannian manifold.
Поступила в редакцию: 19.06.2021 Исправленный вариант: 12.10.2021 Принята в печать: 15.10.2021
Образец цитирования:
E. A. Mazepa, D. K. Ryaboshlykova, “Boundary-value problems for the inhomogeneous Schrödinger equation with variations of its potential on non-compact Riemannian manifolds”, Пробл. анал. Issues Anal., 10(28):3 (2021), 113–128
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa335 https://www.mathnet.ru/rus/pa/v28/i3/p113
|
Статистика просмотров: |
Страница аннотации: | 70 | PDF полного текста: | 35 | Список литературы: | 16 |
|