|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Generalized quadratic spectrum approximation in bounded and unbounded cases
S. Kamouche, H. Guebbai, M. Ghiat, S. Segni Laboratoire des Mathématiques Appliquées et de Modélisation, Université 8 mai 1945 guelma. B.P.401 Guelma 24000 Algérie
Аннотация:
The goal of this paper is to generalize concepts in spectral theory in order to define the quadratic spectrum associated to three bounded linear operators. This concept was initially defined for three matrices. Moreover, we construct a new method of spectral approximation to avoid the problem of spectral pollution. This problem is resolved with the obtention of property U under the norm convergence or the collectively compact convergence. Also, we make numerical tests on the quadratic pencil associated to Schrödinger's operator in order to validate our theoretical results and to show the efficiency of our method.
Ключевые слова:
generalized quadratic spectrum, spectral approximation, property U, quadratic pencil.
Поступила в редакцию: 30.03.2021 Исправленный вариант: 14.06.2021 Принята в печать: 16.06.2021
Образец цитирования:
S. Kamouche, H. Guebbai, M. Ghiat, S. Segni, “Generalized quadratic spectrum approximation in bounded and unbounded cases”, Пробл. анал. Issues Anal., 10(28):3 (2021), 53–70
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa331 https://www.mathnet.ru/rus/pa/v28/i3/p53
|
Статистика просмотров: |
Страница аннотации: | 99 | PDF полного текста: | 74 | Список литературы: | 36 |
|