|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On the $p$-harmonic radii of circular sectors
A. S. Afanaseva-Grigorevaa, E. G. Prilepkinaba a Far Eastern Federal University, Far Eastern Center for Research and
Education in Mathematics,
10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
b Institute of Applied Mathematics, FEBRAS,
7 Radio Street, Vladivostok 690041, Russia
Аннотация:
It is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by $p$-harmonic one, and the fundamental solution of the Laplace $p$-equation acts as logarithm. In the case of $p=2$, the presence of an asymptotic formula for the capacity of a degenerate condenser allows us to generalize this result to the case of a finite set of points. The method of the proof leads to the solution of one particular case of an open problem of A. Yu. Solynin.
Ключевые слова:
condenser capacities, conformal radius, harmonic radius, family of curves.
Поступила в редакцию: 19.06.2021 Исправленный вариант: 22.10.2021 Принята в печать: 27.10.2021
Образец цитирования:
A. S. Afanaseva-Grigoreva, E. G. Prilepkina, “On the $p$-harmonic radii of circular sectors”, Пробл. анал. Issues Anal., 10(28):3 (2021), 3–14
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa327 https://www.mathnet.ru/rus/pa/v28/i3/p3
|
|