|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On the homotopy classification of positively homogeneous functions of three variables
E. Mukhamadieva, A. N. Naimovb a Vologda State University,
15 Lenina st., Vologda 160000, Russia
b Vologda Institute of Law and Economics of the Federal Penitentiary
Service, 2 Shchetinina st., Vologda 160002, Russia
Аннотация:
In this paper, we study the problem of homotopy classification of the set $\mathcal{F}$ of positively homogeneous smooth functions in three variables whose gradients do not vanish at nonzero points. This problem is of interest in the study of periodic and bounded solutions of systems of ordinary differential equations with the main positive homogeneous nonlinearity. The subset $\mathcal{F}_0\subset\mathcal{F}$ is presented and for any function $g(x)\in\mathcal{F}_0$, a formula for calculating the rotation $\gamma (\nabla g)$ of its gradient $\nabla g(x)$ on the boundary of the unit ball $|x| <1$ is derived. It is proved that any function from $\mathcal{F}$ is homotopic to some function from $\mathcal{F}_0$.
Ключевые слова:
positively homogeneous function, homotopy, homotopy classification, vector field rotation.
Поступила в редакцию: 04.03.2021 Исправленный вариант: 13.05.2021 Принята в печать: 18.05.2021
Образец цитирования:
E. Mukhamadiev, A. N. Naimov, “On the homotopy classification of positively homogeneous functions of three variables”, Пробл. анал. Issues Anal., 10(28):2 (2021), 67–78
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa325 https://www.mathnet.ru/rus/pa/v28/i2/p67
|
|