|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Several new integral inequalities via $k$-Riemann–Liouville fractional integrals operators
S. I. Butta, B. Bayraktarb, M. Umara a COMSATS University Islamabad, Lahore Campus,
Defence Road Off Raiwind Rd, Lda Avenue Phase 1 Lda Avenue,
Lahore, Punjab 54000, Pakistan
b Bursa ULUDAĞ UNIVERSITY, Faculty of Education, Department of
Mathematics and Science Education,
Görukle Campus, 16059, BURSA, TURKEY
Аннотация:
The main objective of this paper is to establish several new integral inequalities including $k$-Riemann–Liouville fractional integrals for convex, $s$-Godunova–Levin convex functions, quasi-convex, $\eta$-quasi-convex. In order to obtain our results, we have used classical inequalities as Hölder inequality, Power mean inequality and Weighted Hölder inequality. We also give some applications.
Ключевые слова:
$\eta$-quasi-convex, $s$-Godunova–Levin type, $k$-Riemann–Liouville fractional integral, Hölder inequality, weighted Hölder inequality, power mean inequality.
Поступила в редакцию: 22.07.2020 Исправленный вариант: 30.11.2020 Принята в печать: 11.12.2020
Образец цитирования:
S. I. Butt, B. Bayraktar, M. Umar, “Several new integral inequalities via $k$-Riemann–Liouville fractional integrals operators”, Пробл. анал. Issues Anal., 10(28):1 (2021), 3–22
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa313 https://www.mathnet.ru/rus/pa/v28/i1/p3
|
|