|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Some new generalizations of Hadamard–type Midpoint inequalities involving fractional integrals
B. Bayraktar Bursa Uludag University,
Faculty of Education, Gorukle Campus,
16059, Bursa, Turkey
Аннотация:
In this study, we formulate the identity and obtain some generalized inequalities of the Hermite–Hadamard type by using fractional Riemann–Liouville integrals for functions whose absolute values of the second derivatives are convex. The results are obtained by uniformly dividing a segment $[a,b]$ into $n$ equal sub-intervals. Using this approach, the absolute error of a Midpoint inequality is shown to decrease approximately $n^{2}$ times. A dependency between accuracy of the absolute error ($\varepsilon $) of the upper limit of the Hadamard inequality and the number ($n$) of lower intervals is obtained.
Ключевые слова:
convexity, Hadamard inequality, Holder's inequality, Power-mean inequality, Riemann-Liouville fractional integrals.
Поступила в редакцию: 26.03.2020 Исправленный вариант: 18.06.2020 Принята в печать: 23.06.2020
Образец цитирования:
B. Bayraktar, “Some new generalizations of Hadamard–type Midpoint inequalities involving fractional integrals”, Пробл. анал. Issues Anal., 9(27):3 (2020), 66–82
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa307 https://www.mathnet.ru/rus/pa/v27/i3/p66
|
Статистика просмотров: |
Страница аннотации: | 126 | PDF полного текста: | 62 | Список литературы: | 23 |
|